Quadratically connected sequences 1. Sequences

https://www.linkedin.com/groups/8313943/8313943-6438263236520407042 The sequence $(x_n)_{\mathbb{N}}$ is given by $x_n = \frac{1}{4} \left(\left(2 + \sqrt{3} \right)^{2n-1} + \left(2 - \sqrt{3} \right)^{2n-1} \right), n \in \mathbb{N}.$

Prove that each x_n equal to the sum of squares of two consecutive integers. Solution by Arkady Alt, San Jose, California, USA.

First note that $x_n = \frac{2-\sqrt{3}}{4} \left(7+4\sqrt{3}\right)^n + \frac{2+\sqrt{3}}{4} \left(7-4\sqrt{3}\right)^n$ and, therefore, can be defined by recurrence (1) $x_{n+1} - 14x_n + x_{n-1} = 0, n \in \mathbb{N}$ with initial conditions $x_0 = 1, x_1 = 1$. $(x_2 = 13 = 2^2 + 3^2, x_3 = 14 \cdot 13 - 1 = 9^2 + 10^2).$ We will find a sequence (b_n) of integer numbers such that $x_n = b_n^2 + (b_n + 1)^2 \iff 2x_n - 1 = (2b_n + 1)^2 \iff y_n = a_n^2$ where $y_n := 2x_n - 1$ and $a_n := 2b_n + 1$. By substitution $x_n = \frac{y_n + 1}{2}$ in the recurrence (1) we obtain $\frac{y_{n+1}+1}{2} - 14 \cdot \frac{y_n+1}{2} + \frac{y_{n-1}+1}{2} = 0 \iff y_{n+1} - 14y_n + y_{n-1} - 12 = 0,$ where $y_0 = y_1 = 1$ and, therefore, $y_2 = 25$. We will prove that a_n is defined by recurrence $a_{n+1} - 4a_n + a_{n-1} = 0, \ n \in \mathbb{N}$ (2)with initial conditions $a_0 = -1, a_1 = 1$. Obvious that $a_n \in \mathbb{N}$. Note that $(a_{n+1} + a_{n-1})^2 = 16a_n^2 \iff a_{n+1}^2 + a_{n-1}^2 + 2a_{n+1}a_{n-1} = 16a_n^2 \iff a_{n+1}^2 + a_{n-1}^2 - 14a_n^2 = 2(a_n^2 - a_{n+1}a_{n-1}), a_2 = 4 \cdot a_1 - a_0 = 4 + 1 = 5.$ Since $a_{n+1}^2 - a_{n+2}a_n = a_{n+1}(4a_n - a_{n-1}) - (4a_{n+1} - a_n)a_n = a_n^2 - a_{n-1}a_{n+1}$ for any $n \in \mathbb{N}$ then $a_n^2 - a_{n-1}a_{n+1} = a_1^2 - a_0a_2 = 1 + 5 = 6$ and, therefore, $a_{n+1}^2 + a_{n-1}^2 - 14a_n^2 = 12$. Since $a_1^2 = y_1, a_2^2 = y_2$ and both sequences $(y_n)_{n \ge 1}$, $(a_n^2)_{n>1}$ satisfies to the same recurrence then $y_n = a_n^2$ for any $n \in \mathbb{N}$. By substitution $a_n = 2b_n + 1$ in the recurrence (2) and initial conditions $a_0 = -1, a_1 = 1$ we obtain $2b_{n+1} + 1 - 4(2b_n + 1) + 2b_{n-1} + 1 = 0 \iff b_{n+1} - 4b_n + b_{n-1} = 1, n \in \mathbb{N}$ and $b_0 = -1, b_1 = 0$. And, of course b_n , is integer for any $n \in \mathbb{N}$ (For example $b_2 = 4 \cdot 0 - (-1) + 1 = 2, b_3 = 4 \cdot 2 - 0 + 1 = 9, ...)$

Quadratically connected sequences 2. Sequences(Posted 08.23.18)

https://www.linkedin.com/groups/8313943/8313943-6437946598717816833 The sequence $(x_n)_{n\geq 1}$ is defined by $x_1 = x_2 = 1$, and

 $x_{n+2} = 14x_{n+1} - x_n - 4, n > 1.$

Prove that each member of the given sequence is a perfect square. Solution by Arkady Alt, San Jose, California, USA. Let $(a_n)_{n\geq 1}$ be sequence defined by recurrence $a_{n+1}-4a_n+a_{n-1}=0, n\in\mathbb{N}$ with initial condition $a_0 = 3, a_1 = 1$. Obvious that $a_n \in \mathbb{N}$. Since $(a_{n+1} + a_{n-1})^2 = 16a_n^2 \iff a_{n+1}^2 + a_{n-1}^2 + 2a_{n+1}a_{n-1} = 16a_n^2 \iff a_{n+1}^2 + a_{n-1}^2 - 14a_n^2 = 2(a_n^2 - a_{n+1}a_{n-1}), a_2 = 4 \cdot a_1 - a_0 = 4 - 3 = 1$ and $a_{n+1}^2 - a_{n+2}a_n = a_{n+1}(4a_n - a_{n-1}) - (4a_{n+1} - a_n)a_n = a_n^2 - a_{n-1}a_{n+1}$ for any $n \in \mathbb{N}$ then $a_n^2 - a_{n-1}a_{n+1} = a_1^2 - a_0a_2 = 1 - 3 = -2$ and, therefore, $a_{n+1}^2 + a_{n-1}^2 - 14a_n^2 = -4$. Since $a_1^2 = x_1, a_2^2 = x_2$ and both sequences $(x_n)_{n\geq 1}, (a_n^2)_{n\geq 1}$ satisfies to the same recurrence then $x_n = a_n^2$ for any $n \in \mathbb{N}$