## Quadratically connected sequences 1.

## Sequences

https://www.linkedin.com/groups/8313943/8313943-6438263236520407042
The sequence $\left(x_{n}\right)_{\mathbb{N}}$ is given by

$$
x_{n}=\frac{1}{4}\left((2+\sqrt{3})^{2 n-1}+(2-\sqrt{3})^{2 n-1}\right), n \in \mathbb{N}
$$

Prove that each $x_{n}$ equal to the sum of squares of two consecutive integers.
Solution by Arkady Alt, San Jose, California, USA.
First note that $x_{n}=\frac{2-\sqrt{3}}{4}(7+4 \sqrt{3})^{n}+\frac{2+\sqrt{3}}{4}(7-4 \sqrt{3})^{n}$ and, therefore, can be defined by recurrence

$$
\begin{equation*}
x_{n+1}-14 x_{n}+x_{n-1}=0, n \in \mathbb{N} \tag{1}
\end{equation*}
$$

with initial conditions $x_{0}=1, x_{1}=1$.

$$
\left(x_{2}=13=2^{2}+3^{2}, x_{3}=14 \cdot 13-1=9^{2}+10^{2}\right)
$$

We will find a sequence $\left(b_{n}\right)$ of integer numbers such that
$x_{n}=b_{n}^{2}+\left(b_{n}+1\right)^{2} \Longleftrightarrow 2 x_{n}-1=\left(2 b_{n}+1\right)^{2} \Longleftrightarrow y_{n}=a_{n}^{2}$,
where $y_{n}:=2 x_{n}-1$ and $a_{n}:=2 b_{n}+1$.
By substitution $x_{n}=\frac{y_{n}+1}{2}$ in the recurrence (1) we obtain

$$
\frac{y_{n+1}+1}{2}-14 \cdot \frac{y_{n}+1}{2}+\frac{y_{n-1}+1}{2}=0 \Longleftrightarrow y_{n+1}-14 y_{n}+y_{n-1}-12=0
$$

where $y_{0}=y_{1}=1$ and, therefore, $y_{2}=25$.
We will prove that $a_{n}$ is defined by recurrence
(2) $\quad a_{n+1}-4 a_{n}+a_{n-1}=0, n \in \mathbb{N}$
with initial conditions $a_{0}=-1, a_{1}=1$. Obvious that $a_{n} \in \mathbb{N}$.
Note that
$\left(a_{n+1}+a_{n-1}\right)^{2}=16 a_{n}^{2} \Longleftrightarrow a_{n+1}^{2}+a_{n-1}^{2}+2 a_{n+1} a_{n-1}=16 a_{n}^{2} \Longleftrightarrow$
$a_{n+1}^{2}+a_{n-1}^{2}-14 a_{n}^{2}=2\left(a_{n}^{2}-a_{n+1} a_{n-1}\right), a_{2}=4 \cdot a_{1}-a_{0}=4+1=5$.
Since $a_{n+1}^{2}-a_{n+2} a_{n}=a_{n+1}\left(4 a_{n}-a_{n-1}\right)-\left(4 a_{n+1}-a_{n}\right) a_{n}=a_{n}^{2}-a_{n-1} a_{n+1}$ for any $n \in \mathbb{N}$ then $a_{n}^{2}-a_{n-1} a_{n+1}=a_{1}^{2}-a_{0} a_{2}=1+5=6$ and, therefore, $a_{n+1}^{2}+a_{n-1}^{2}-14 a_{n}^{2}=12$.
Since $a_{1}^{2}=y_{1}, a_{2}^{2}=y_{2}$ and both sequences $\left(y_{n}\right)_{n \geq 1},\left(a_{n}^{2}\right)_{n \geq 1}$ satisfies to the same recurrence then $y_{n}=a_{n}^{2}$ for any $n \in \mathbb{N}$.
By substitution $a_{n}=2 b_{n}+1$ in the recurrence (2) and initial conditions $a_{0}=-1, a_{1}=1$ we obtain
$2 b_{n+1}+1-4\left(2 b_{n}+1\right)+2 b_{n-1}+1=0 \Longleftrightarrow b_{n+1}-4 b_{n}+b_{n-1}=1, n \in \mathbb{N}$ and $b_{0}=-1, b_{1}=0$. And, of course $b_{n}$, is integer for any $n \in \mathbb{N}$
(For example $b_{2}=4 \cdot 0-(-1)+1=2, b_{3}=4 \cdot 2-0+1=9, .$. )

## Quadratically connected sequences 2.

Sequences(Posted 08.23.18)
https://www.linkedin.com/groups/8313943/8313943-6437946598717816833
The sequence $\left(x_{n}\right)_{n>1}$ is defined by $x_{1}=x_{2}=1$, and

$$
x_{n+2}=14 x_{n+1}-x_{n}-4, n>1
$$

Prove that each member of the given sequence is a perfect square.
Solution by Arkady Alt, San Jose, California, USA.

Let $\left(a_{n}\right)_{n \geq 1}$ be sequence defined by recurrence $a_{n+1}-4 a_{n}+a_{n-1}=0, n \in \mathbb{N}$ with initial condition $a_{0}=3, a_{1}=1$. Obvious that $a_{n} \in \mathbb{N}$.
Since $\left(a_{n+1}+a_{n-1}\right)^{2}=16 a_{n}^{2} \Longleftrightarrow a_{n+1}^{2}+a_{n-1}^{2}+2 a_{n+1} a_{n-1}=16 a_{n}^{2} \Longleftrightarrow$ $a_{n+1}^{2}+a_{n-1}^{2}-14 a_{n}^{2}=2\left(a_{n}^{2}-a_{n+1} a_{n-1}\right), a_{2}=4 \cdot a_{1}-a_{0}=4-3=1$ and $a_{n+1}^{2}-a_{n+2} a_{n}=a_{n+1}\left(4 a_{n}-a_{n-1}\right)-\left(4 a_{n+1}-a_{n}\right) a_{n}=a_{n}^{2}-a_{n-1} a_{n+1}$
for any $n \in \mathbb{N}$ then $a_{n}^{2}-a_{n-1} a_{n+1}=a_{1}^{2}-a_{0} a_{2}=1-3=-2$ and, therefore, $a_{n+1}^{2}+a_{n-1}^{2}-14 a_{n}^{2}=-4$.
Since $a_{1}^{2}=x_{1}, a_{2}^{2}=x_{2}$ and both sequences $\left(x_{n}\right)_{n \geq 1},\left(a_{n}^{2}\right)_{n \geq 1}$ satisfies to the same recurrence then $x_{n}=a_{n}^{2}$ for any $n \in \mathbb{N}$

